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ABSTRACT

Hanandeh, Ahmad Ali. Estimation of the Parameters of Downton’s Bivariate
Exponential Distribution Using Moving Extreme Ranked Set Sampling. Master of
Science Thesis, Department of Statistics, Yarmouk University, 2011 (Supervisor:
Prof. Mohammad Fraiwan Al-Saleh)

The purpose of this thesis is to estimate the parameters of Downton's bivariate
exponential distribution (DBED), using moving extreme ranked set sampling
technique (MERSS). The estimators obtained using MERSS are compared via their
biases and mean square errors (MSE's) to their counterparts using simple random
sampling (SRS). Simulation is used whenever analytical comparison is not possible.
It is shown that these estimators when using MERSS with concomitant variable are
more efficient than the corresponding ones using SRS. Also, MERSS with
concomitant variable is easier to use in practice than RSS with concomitant variable.
In addition, we derive the best linear unbiased estimators (BLUE) of some
parameters. It is shown that these estimators are very close to the corresponding
naive estimators. Moreover, Fisher information matrix of Downton's bivariate
exponential distribution is derived and used to find the asymptotic efficiency of the
maximum likelihood estimator (MLE) of each of the parameters using MERSS with
respect to those based on SRS. It is shown that some of the estimators obtained using
MLE based on MERSS are asymptotically more efficient than the corresponding

ones based on SRS.

Key Words: Downton's Bivariate Exponential Distribution; Simple Random
Sampling; Moving Extreme Ranked Set Sampling; Concomitant Variable; Best
Linear Unbiased Estimator; Maximum Likelihood Estimation; Fisher Information

Matrix.
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CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1. INTRODUCTION

Statistics is the science which is concerned with the collection of data from a
population, summarizing and describing data, and ultimately arnalyzing them to
draw inferences about the population characteristics. There are two ways to study
the characteristics of any population, if the entire population is sufficiently small,
then the researcher can include the entire population in the study. This type of
research is called "census". Usually, the population is too large for the researcher to
attempt to survey all of its units. A small, but carefully chosen sample can be used.
The Qample should reflect the characteristics of the population from which it is
drawn. In order to make any generalizations about a population, a sample must be
representative of the populationie., a sample resulting from a sampling method that
can be expected to adequately reflects the properties of interest of the parent
population. A representative sample may be obtained using one or more of several
sampling methods. The choice among them depends upon the objectives of the

survey and the characteristics of the population.

A short description of some well known sampling techniques is given in
Section 2. OQur purpose in this thesis is to use moving exireme ranked set sampling
(MERSS) to estimate the parameters of Downton’s bivariate exponential distribution
(DBED). The related literature is reviewed in Section 3. Thesis organization is given

in Section 4.
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2, SAMPLING TECHNIQUES

In this section we will explain some sampling techniques that are related

to our work.
2.1 Some Sampling Techniques

The most popular sampling method that is usually used in statistical studies is
simple random sampling (SRS). In SRS, the units of the sample are selected
randomly from the population. A SRS of size  from a population is a subset of the
population consisting of 1 units selected in such a way that all subsets of size 1 are
equally likely to be selected; but for an infinite population (which we are interested
in) each unit of the sample are selected independently and comes from the same
population (iid). Simple random sampling is the basic building block and point of
reference for all other sampling methods. Stratified random sampling is another
sampling technique. Here, the population is first divided into non-overlapping
groups of elements called strata according to some characteristic. Then, a simple
random sample is taken from each stratum; within a stratum, all units have equal
chances of selection. The chance of selection may vary among strata. Systematic
random sampling is a third method which can be used in the case of moving
population, a random starting element is chosen from the first k elements in the
frame using a random number generator. The sample is chosen by going through
the population sequentially; i.e., every k“ element thereafter. This is known as 1-in-%k
systematic sample. Another popular random technique is cluster random sampling,.
Here, the population consists of clusters (groups). Then, a simple random sample of

clusters is chosen and all units in the chosen clusters are measured.

Recently, attention is being paid to another technique called the ranked set
sampling. This technique and some of its variations are the content of the next
section. We propose here to apply one variation of the technique namely, moving

extreme RSS to the Downton’s bivariate exponential distribution. '
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2.2 Ranked Set Sampling

Seeking to improve the accuracy of crop yield estimates without increasing the
number of observations that need to be quantified, McIntyre (1952) suggested a
sampling technique which is later called RSS. This technique of data collection was
introduced for situations where taking the actual measurements on sample
observations is difficult (i.e., costly, time-consuming) as compared to the judgment
ranking of them.

The ranked set sampling technique can be executed as follows:

Step 1: Randomly draw m simple random samples each of size m from the
population of interest.

Step 2: Within each of the m sets, the sampled items are ranked from lowest to
largest according to the variable of interest based on the researcher’s judgment or by
any negligible cost method that does not require actual quantifications.

Step 3: From the first set of m units, the unit ranked lowest is measured. From the
second set of m units, the unit ranked second lowest is measured. The process is
continued until the " ranked unit is measured from the m* set. Note that although
m? units are sampled initially, only m of them are measured with respect to the
variable of interest.

The above procedure describes one cycle of the RSS technique.

Step 4: Repeat teps (1-3), if necessary, k independent times (cycles) to obtain a total

sample of size n= mk units.

In McIntyre’s RSS procedure, it is assumed that the researcher could order a set
of size m units with respect to the characteristic of interest Many authors
recommended that m should be 2, 3 or 4 to minimize the ranking error [see Takahasi

and Wakimoto (1968)].
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2.3 Moving Extreme Ranked Set Sampling

There are several variations of RSS; one of them is moving extreme ranked set
sampling. In this procedure only the maximum (or minimum) of sets of varied size
is identified (by judgment) for quantification. The MERSS, as described by Al-Odat
and Al-Saleh (2001) and Al-Saleh and Al-Hadrami (2003 a, b), can be executed as

follows:-

Step 1: Select m simple random samples of size 1, 2,3, ..., m, respectively.

Step 2: For each of these samples, measure accurately the maximum ordered
observation from the first set identified by judgment, the maximum ordered
observation from the second set, efc. The process continues in this way until the
maximum ordered observation from the last m sample is measured.

Step 3: Repeated steps 1 and 2, if necessary, r times to obtain a sample of size n =rm.

3. LITERATURE REVIEW

This review of literature is based on Kaur et al. (1995). Recent articles that come
after that date are also reviewed. Only research directly related to our proposed

work will be given in some details.

Ranked set sampling was introduced by Mclntyre (1952), in the context of
estimating pasture yields. He claimed, without providing a mathematical proof, the

following:-

n

A k
1. The mean of the RSS, =%ZZX{,.],, regardless of any error in
n

r=l =1
judgment ranking, is an unbiased estimator of the population mean (),
where X, is the it judgment order statistic in the rth iteration.
2. With perfect ranking, the efficiency of RSS w.r.f. SRS in estimation the

m+l

population mean is nearly for typical unimodal distributions.
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3. The efficiency of the estimators of higher population moments based on RSS
are only slightly better than those based on SRS.

Takahasi and Wakimoto (1968) obtained the following main theoretical

results:-
Under perfect ranking, the mean of a ranked set sample is an unbiased

estimator of the population mean, and its variance is always smaller than the

variance of the mean of a simple random sample of equal size. Also, they showed

that:

_ig z}_m zzlm 2 l_m Y
J(x)= Zf:(x)t H m;ﬂﬂanda m§Ji+mZ(#i #) .

M i =
where, f(x)isthepdfofarv. X, i = E(X),
o= Var(X),

£,(x)is the pdf of the i* order statistic, 1, =E(X,), and

o =Var(X,)-

Comparative performance of the estimators is assessed using either the relative

precision (RP) (efficiency), or relative saving (RS), which are defined as follows:

o var
off Glocesfl )= RP = L2 Ws),
var(izss)
and RS = var(#ms):var(ym,) _ 1...};‘_}).
var(4 gs)
They also showed that:

VAT flgss) = i(" —;;-i(ui —#)2).

m+1

2

1 &y, - H m-1 A ~
R§S=—S |2 |, 0<RS< and 1<e , <
mé( o J m+1 off (K rss» M sms) 2
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"The lower bound is attained if and only if the parent distribution is

degenerate. The upper bound is attained if and only if the parent distribution is

rectangular”. [Kaur et al. (1995)]

Stokes {1977) studied RSS with concomitant variables. She assumed that each
sampling unit has a bivariate response (X,Y), where X is the variable of interest
and ¥ is the concomitant variable that is not of direct interest but is relatively easy to

measure,

Samawi et al. (1996) introduced exireme ranked set sampling (ERSS)
procedure. It was shown that the ERSS estimator of the mean is more efficient than
the usual SRS mean and unbiased if the underlying distribution is symmetric. In this
ERSS, only the two extremes (Min, Max) are identified by judgment for different
sets.

Al-Saleh and Al-Kadiri (2000) considered double RSS (DRSS) as a procedure
that increase the efficiency of RSS estimator without increasing the set size n. It was
shown that the DRSS estimator of the mean is more efficient than that using RSS.
Furthermore, ranking in the second stage is in some sense, easier than ranking in the

first stage.

Al-Saleh and Al-Omari (2002) generalized DRSS to multistage ranked set
sampling. They showed that the efficiency is always between 1 and m? for all
distributions and equal to m? for the uniform distributions, when the number of
stages goes to infinity. See also Al-Saleh and Samuh (2008) and Samuh and Al-
Saleh (2011).

Al-Saleh and Zheng (2002) proposed a new RSS for two characteristics and
called it a bivariate ranked set sampling.

Bayesian estimation with RSS was considered by Al-Saleh and Muttlak (2000)
and Al-Saleh and Abu-Hawwas (2002).
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Moving extremes ranked set sampling is a useful modification of ranked set

sampling, Unlike RSS, MERSS aliows for an increase of set size without introducing
too much ranking error. MERSS was introduced by Al-Odat and Al-Saleh (2001),

they introduced the concept of varied set size RSS.

Al-Saleh and Al-Hadrami (2003 a, b) used varied set size of RSS (coined by
them MERSS) for estimating the mean of the normal and exponential distributions,
and they showed that this procedure could be more useful than SRS for estimating

the mean of symmetric distributions.

Ananbeh (2004) (see also Al-Saleh and Ananbeh (2005, 2006)) estimated the
means and the correlation of the bivariate normal distribution using MERSS with

concomitant variable.

Al-Saleh and Samawi (2010) estimated the odds based on MERSS. The
suggested estimator based on MERSS is motivated by some of the theoretical

properties of the sum of geometric series.

Ranked set sampling and some of its variation were used by many authors in
parametric estimation: bivariate normal, exponential, Downton’s bivariate

exponential,..., efc.

Moran (1967) introduced a bivariate exponential distribution. Many authors
have considered the reliability of theoretical derivations with bivariate exponential

distributions.

One of the most important bivariate distributions in reliability theory is the
bivariate exponential; there are various bivariate exponential distributions. In this
research, we are interested in Downton’s bivariate exponential distribution with

probability density function (pdj):
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PRV S (NN Y . B B
f 33, 2. ) a,aa(l—p)e"p[ [,1](1_p)*al(1~p)ﬂ {(M)%(l-pJ v

is the modified Bessel function

I
'2

where x,y,4,4,>0,0< p<1and I,(2)=, .
: k-0 :

of the first kind of order zero.

Downton (1970) noted that “for (1) to be a density function the correlation p must

be positive, a restriction which arises naturally from the model by which the density
was obtained In an equipment failure context it is difficult to imagine a situation

which could lead to negative correlation”

Let (X,Y)be a random vector from (L.1), then the marginal distributions of
X and Y are exponential with parameters 4, and 1,, respectively; so, in particular,

E(X)=4 and E()=4,.

Downton (1970) showed that:

E(Y]X=x):(l—p)lz+p%-x,

and
12
Var(Y | X =x)=(1-p)* 4 +2p(1—p)1—2—x.
The parameter p is the correlation coefficient between X and Y with

independence corresponding to p = 0; since 1,(0)=1. Also 0<p <1,

This distribution is a candidate distribution for positively correlated bivariate
exponential data, in which the conditional mean and variance of one variable is

increasing function of the other variable.
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This distribution has received real applications in several fields. The following

are some of them:

v TLefebvre (2004) considered forecasting the flow values of the Mistassibi
River in Quebec (Canada).

v Qil pollution of sea water and the tar deposit near sea shore. Here,
X represents the tar deposit and ¥ represents the oil pollution and the
two variables are highly positively related. In this application, the oil
pollution is hard and expensive to measure while the tar deposit can be
ranked visually (Bain (1978), Chacko and Thomas (2008)).

v Kim and Rao (2000) considered a two-dimensional warranty that is
offered for new automobiles. Here, the warranty is valid until either a
pre-specific time limit or pre-specific usage limit (in miles driven) is
exceeded.

v Choo and Conolly (1979) used this distribution in queueing systems.

v Nagao and Kadoya (1971) suggested that this distribution can be used
for such pairs of hydrological quantities as a streamflow at two points
on a river or rainfall at two locations.

v Cotdova and Rodriguez-Iturbe (1985) considered it as a model of the
intensity and duration of a storm of rainfall.

v Reliability. A model for joint density of failure times when "shocks" are
causing different types of failure to components {Nadarajah and Kotz
(2006)).

For more application see also Balakrishna, N. and Lai, C. D. (2009) pages 401 - 466.

The above density was derived in a different form by Moran (1967). The above
form of the density with conditional expectation and variance was derived by
Downton (1970). It isa special case of Kibble’s (1941) bivariate gamma distribution.
Note that unlike the bivariate normal distribution, the conditional variance is not

fixed in x. Other results about this distribution can be found in Kotz et al. (2000).
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Iliopoulos (2003) noticed that the joint sufficient statistic is (X4,..., X 1,,

Consider a random vector (X,Y) from DBED. Nagao and Kadoya (1971)
showed that the maximum likelihood estimators of 4 and 4, are X and 7,

respectively.

Two classes of estimators of p based on the complete bivariate samples were

derived by Al-Saadi and Young (1980):

S xy

(i) Method of moments estimators based on the statisic = = where
m

D » ¢
XY= —and Y =2—.
m m

They suggested that:

Y X,
p = E—:—'l
mXY
as an estimator of p, and using the condition that 0<p<1, a modified

estimator for p is:

0 if p<0
p1=jp if 0spsl
1 if p>1

.

(if) Estimators based on the sample correlation coefficient (r)

>0, - T -P)

¥ =

HCESIPAAS

10
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Using the condition that 0 < p <1, they suggested that:

£ =

~ 40 if -1<r<0
r if rzo0

Note that the first estimator in (i) is a function of the sufficient statistic, while the

estimator in (if) is not, so we will use the first estimator.

Al-Saleh and Diab (2009) estimated the parameters of Downton's bivariate
exponential distribution based on a ranked set sample. Parametric and
nonparametric methods were considered. The suggested estimators were compared
to the corresponding ones based on simple random sampling. They noticed that

some of the suggested estimators are significantly more efficient than the ones based

on simple random sampling.

He and Nagaraja (2011) estimated the correlation of Downton's bivariate
exponential distribution when all other parameters are unknown using incomplete

samples made from (i) al the ¥ -values and the ranks of associated X -valuesie., (i,Y;,)
1<i<n, (i) a Type II rightcensored bivariate sample consisting of (X,,.Y..),

1<i<r<n, in both cases using simulation, they found that the preferred estimator

under {f) is a function of the sample correlation of (X,,.¥;.,) values, and under (ii), a

method of moments estimator involving the regression function is preferred.
For more details about RSS and its variations, see also Al-Saleh and Endeer

(2007), Al-Saleh (2006), Sinha (2005), Sroka et al. (2005), Wolfe (2004), Chen et al.
(2004) and Zheng and Al-Saleh (2002).

11
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4. THESIS ORGNIZATION

The coming chapters in this thesis are organized as follows:

Chapter 2 dealt with the estimation of 4 and 4, using SRS and MERSS for the
two cases of known and unknown p, also, estimation of the correlation coefficient
p using SRS and MERSS for the two cases of known and unknown 4, and 4, is
discussed. We also derived the best linear unbiased estimation of 4, and 4, using
SRS and MERSS . The efficiency of these estimators are also obtained.

Chapter 3 dealt with the estimation of 4,4, and p using the method of
maximum likelihood estimation based on SRS and MERSS. The asymptotic
efficiency of these estimators are also obtained.

Conclusions and some suggested further work are given in Chapter 4.

12
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CHAPTER TWO

Estimation of the Parameters of Downton’s Bivariate Exponential

Distribution Using Moving Extreme Ranked Set Sampling

1. Introduction

In this chapter, we consider the estimation of the parameters of DBED
(4,4, & p), using MERSS. The suggested estimators are compared with the
corresponding ones using SRS. Estimation of 4, and 4, for the two cases of known
and unknown correlation coefficient p is considered. Furthermore, estimation of
the correlation coefficient p for the two cases of known and unknown 4, and 4, is

also discussed.
2. Expectations and Variances of X, and X,

Let (X, X)) (X35 12)0s(X 0 Y,), m22, be arandom sample from the Downton’s

bivariate exponential distribution, DBED (4, 4,, p), with common pdf.

fyi4, 4,0 ,11,17(1—;:)“[{ (ﬁl(l—p)+ﬂq(l“to)}] Io[(ﬂqﬂq)%(l—p)} ?

2k
where, x,y,4,4, >0,0< p<1l and I;(2)= 2(2/2) is the modified Bessel function
k=0

of the first kind of order zero.

Let f,(x), f;(») be the marginal density of X and Y, respectively, and let Fy(x),
F,(») be the corresponding cumulative distributions of X and ¥, respectively. It
can be verified that the marginal density of Xand Yare exponential with
parameters 4, and 4,, respectively; so, in particular, E(X ) = 4, and E(Y) =4,. (see
Hipoulos (2003)).

13
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The marginal probability density functions can be written as:
1 x
X) = —expl ——— ; x>0,
MO ‘{ 11)

fY(y)r-iex --i}y >0,

Also, the marginal distribution functions are:

Fy(x)=1-exp| ——
(x) exp( ﬂ,}
F,(y):l—exp{—%].

Now, suppose that {(X(m)’YE:.-l]),(X(z:z)aY[2;2])ms(X(k:k)s11k;k})}r k=12,..,m, be a

and

and

MERSS sample from DBED, X, is the i* order statistic of X;,X,,..,X,, and Y, is
the Y -variates paired withX,,; ¥, is called a concomitant order statistic. If the
judgment ranking on X -variates is perfect, then for k= 12,...,m, (X4 Yn) has
the density fy, ., (x.») by:

Franton @9 = Fron D fyx (9], (see Yang (1977)) @
where, fy,, (x) is the density of the ktk order statistic of a SRS of size k from an
exponential distribution. f; | (x) is the density of the corresponding induced rank
of ¥, and f,,,(y|x)is the conditional pdf of (Y} X =x).

But,
P (0 = KF @) £ (%)

ek(l—exp(— ﬂ)"“fx x). | | 3

Also,
fX(ll)'YlM] (x,y) = fr|x ylX= x)fx‘u) (x)

14
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- f){}’(xyy)

(x).
Jx(®) it T
Applying (3), we get
J , (x,») L ENE
Frantun @)= —Xm k(l‘exp[" }1‘}’* (),
=k(l~ exp(— -;1—})*"' fry(x:9). (4)
It can be verified that
Xieny dzk:k Z’+1 where Z,,Z,,..,Z, areiid exp(4) (see Yang (1977)).
f=1 J
It follows that
E(Z)) .
Xaon) = Zk j+1 ,11;;{ —j+b ©)
Also,
L Var(Z,) k
=4 6
Var(X o) = ,z,;(k iy Z:, k- ;+1) ©)
Now,

E(}Ek:k]) = E(E (Y[k:kl | X wn )
But

E(Y1X=x)=(1~—p)zq+p%x.

Also, by Downton (1970) and Yang (1977)
d
}Tk:ic] I X(k:k)=Y | X .
It follows that
E(Y[k:k]) = E(E(Y[.Jz:k] | X(m))) =E(EY|X= X(k-_k}))

=(- P))Q + p%E(X(k;k))-

Applying (5), we get

E(¥yyy)= (1~ P)’lz"‘pﬂiz

k- ]+1 @

135
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Also,

Var(Y) = Ear(fy | Xg)) +Var (EQa | Xan ) -

But,
A
Var(¥, | Xyny) = Var(Y | X = X)) =1~ py ;Lzz +2pQ1- P)‘A‘;'X(m .
It follows that
2
BV ar Q| X =2+ 200-9) 7 By
Applying (5), we get
L 1
E(Var(Yy u]|X(u))) (1- P) ”‘1+2P(1 P)Az(ﬂjzk +1]
J=1
1 W PP Y _ 3
= ,1{(1 Py +2p(1 p)(JZ Py }
Also,
_ _ 4 : A
Var{E(Y};y) | X ppy)) =Vari (1 A+ p—= ) Xan [=P 2 ~Var(X4)-
Applying (6), we get
Var(E(Yyy, | Xaun))=p A'zz(k ey +1)
Hence,

Var(Yy,,) =(1- p)ﬂq((l P)+2PZk_ +J P %Z(k J+1)2

1
/7-2{(1 P’ +2p(1- P)Zk_ _~ +p’ _]m} ®)

The previous theoretical results are summarized in the following theorems.

Theorem (2-1
Let [(X,.}),(X,,})...(X,.Y,)} be a SRS from DBED (4, 4,p) and let

{(X s Fia (X 229 gy X iy Y b k= 1,2,..,m , be an MERSS sample taken from

the same distribution. Then

16
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a, E(X(u)) ’llzk j+l

b. Var(X
ar( (u;)) ’11;(]( j+l)

. EQfy) == P+ P,

j..]k_ +1

d. Var(Y, ch) ;*2{(1 p)2+29(1 P)zk_ +1 zz(k _]+1)}

J=1
3. Unbiased Estimation of 4 and A, Using MERSS, When p is known

In this section we consider the estimation of 4, and A, when p is known
using MERSS and SRS, and find the variances of the suggested estimators. Also, we

compare the variances of these estimators.

Let denote the unbiased estimators of 4 and A, based on SRS by 4, ;,, and

A; s » Yespectively, and those based on MERSS by 4,, ... and ﬂ; wirss» Yespectively.

These estimators can be derived as follows:

m k
ECY Xu) = ZE(XW))quz -
= k=1 j .-""1
For simplicity, let
m- k
kz;_,zk J+1
So,
S,-——l,S2=1+(1+l)=2.5,Ss=1+(1+l)+(1+—1-+~1—)=4.333 oo
2 2 2 3
S =1+(1+l)+(1+—1—+1)+ +(1+-1—+-1-+ +l) It can be easily verified that
m 5 StP - gttt y
m-1 m-2 1
S,=m+——+——+..+—;
2 3 m
Therefore,

2omtl—~
_zz: k

k=1

17
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E(;Z;X(k:k)) = A5,

Hence,
~ 1 "

A rappss = _.S: - (k k) )]

is an unbiased estimator of 4.

Now,
A '1 n
Var(Ay yenss) = Var(S—ZX(m) = ZVar(X(m)
m k=1 m i=1
2 m k
V —_—
Z (Zk— U kzztk J+1)
For simplicity, let
m ok
C,=
kzz;jz:{(k J+1)
So,

1 1 1 1
C =1 C2=l+(1+z)=2.25, C3=1+(l+z)+(l+z+§)=3.6l,. .

1 1 1 11 1
C =1+(+=)+(+—-+)+. . +(Q+—+—+...+—),
" ¢ 4) ( 4 9) ( 4 9 mz)

Commt D+ 5Dy = 3 L

Therefore,
Z(m+1) -k
k=1
And,
» C
Var (R s ) =<5 2 (10)
Let
N =_l—.i
m'D

It is well-known that ,11 szs 15 an unbiased estimator of 4, .

13



© Arabic Digital Library - Yarmouk University

Also,

2 2z

: 1 1 & mA
Var(A o) =Var(—) X,)=— ) Var(X)=—5-=—". (11)
s m; mzé mom
Hence, using (10) and (11) we get
A o
; Va-"(’ll sns) m -
B (e ypasyo o spg ) = im0 =
MERSS > SRS Var(A, yzrss) _C;::_) 112 mC,,
Sﬂl
z (m+1)--k)z n (m+1) k (m+1) —k
(Z—— e fe
c(m+) -k 1) -k m > (m+D) -k +1) k
m (m+1)—k
3 mrD-k £k 2

oy mk Z (m + 1) k

k=1

which is clearly larger than 1 and increasing in m.

The first term {iw} is clearly larger than 1, and the second term

k=1 mk
i(mﬂ)—k
= — (m+)—k +’;) T is also larger than 1, since k is positive, and the sum in the
k=1

numerator is divided by &, but the sum in the denominator is divided by &* /.., the

S2
C”' is lager than 1.

sum in numerator is less than the sum in the denominator, so

The previous theoretical results are summarized in the following theorems:
Theorem (2-2)

- 1
a. A, ———— > X, ., is an unbiased estimator of 4;
MERSS T ( + 1) -k kz_:. (kik)

k=1 k
A Z(m+1) k
b, VarCh ) = =2 2.

=]

19
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» (m+)—kY
L i

S EBFCh s+ Ao sms) = 20 D _1 is increasing in the set size m and greater
A i kd

=l

thanlfor m=z2.

Now,

E(i)’ikj;]):ilz(},[k:k]):i{(l P4 +P’122k ]+1}

m Kk
=ml-P)A+Ph) Y, k_ =m(l- P, + PAoS,
k=1 j=1

= j'2[”“!(1_'f’)"'_f:‘)s'ﬂ'r]

Hence, when p is known:

m

ﬁmm - )+pS‘ ——————Y'¥,,,is an unbiased estimator of 4,. (13)
m m k=1
It follows that
. . .
Va"(ﬂnumss)—Va"{m(l Y ; [u]} (mi—-p)+ 5. ) & ZV‘”(PIH:])
= 3 2 1—- 2 : 242 X
(m(1 - )+ﬂ5‘ ;{ pﬂ’[( g e ]“’ Ry v }
Then
: 4
Varth ass) = oy (m-p) 4200~ p)S, +9°C,).  (19)
Let
. | =

It is well-known that 4, ;. is an unbiased estimator of 1,.
Also,

Var(Z, o) = Var(—ZY =-1—2iVar(Y)_m;f
i=1 i=1 m

(15)

s.l&:.

20
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Hence, using (14) and (15), we get

A

A
Eff (Ao rprss» Az srs) =

which is clearly larger than 1, since
m*(—p)” +2mpll = P)S, + P’S, is larger than 1

Eff (A syenss> A2 sns) = m? (L= p)* +2mp(1- p)S,, +mp>C,,

2
pd

"

Var (,./L sns') — ;‘
Var(4;, mess)

ma-p)* +200-p)5, +£°C.) 5

(m-p)+pS, Y
(m(1=p)+ pS, )

" mlm(i- pY +2p(- p)S, +P'C.)

Sé', is larger than 1.

(16)

Note that Eff (4 ,epss s sus ) — =22 Eff (A yigass » 41 sns )» and goes to 1as p — 0 for

fixed m.

Table (2.1) contains the efficiency of 4 zpe @0d 4, e With respect to the

corresponding estimators using SRS.

Table (2.1): The efficiency of A, 0 Wt Ay srs (A ygass W43 g )

2 3 4 5
P
0.1 1.389(1.004) | 1.733(1.008) | 2.044(1.012) | 2330(1.015)
0.2 1.389(1.016) | 1.733(1.031) | 2.044(1.044) | 2330(1.055)
0.3 1389(1.035) | 1.733(1.066) | 2.044(1.093) | 2.330(1.116)
0.4 1389(1.061) | 1.733(1113) | 2.044(1.158) | 2.330(1.197)
0.5 1.389(1.095) | 1.733(1.173) | 2.044(1241) | 2.330(1.299)
0.6 1389(1.135) | 1733(1.247) | 2.044(1342) | 2.330(1.425)
0.7 1389(1.184) | 1.733(1.336) | 2.044(1.467) | 2.330(1.581)
0.8 1.389(1.241) | 1.733(1444) | 2.044(1.619) | 2.330(1.774)
0.9 1.389(1.309) | 1.733(1.574) | 2.044(1.808) | 2.330(2.017)
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Based on the previous table we conclude the following:

1. Eﬁ‘(zi,MERSS,i,SRS) and Eﬂ’(ﬁ;mm,ﬂqm) are always greater than 1.

2. Ef (/%1 MERSS’j‘l )i fixed in pand increasing in the set size 1.

3. Eff (AA2 Mgm,ﬂ; ) changes over p and over the set size m,

4. Eff (3; \iErss A sz ) 19 iNcreasing in the set size m for fixed p.

5. Eff (A yrss» Ao sps) 18 increasing in p for fixed set size m.

~

6. For any set size m, Eff (A zmssrAasrs) 8etS close t0 Eff (4 ppeshiges) a5 p gets

closeto 1.

7. For example, for known p=0.9 if we take m=5, then Eff (4, pw,hsps) =233, L€,

with 100 units using MERSS we do as well as we do with 233 units using SRS.

Diab (2006) (see also Al-Saleh and Diab 2009) obtained the following table which

contains the efficiency of the estimators of 4 and 4, using ranked set sampling

(,1A1 RS /1; rss ) With respect to the corresponding estimators using SRS (4, g5, 4 g5 ):

Table (2.2): The efficiency of A, poc Wrt. A oo (A pos W4, i5)

2 3 4 5
P
0.1 1.333(1.003) | 1.636(1.004) | 1.920(1.005) | 2.190(1.005)
0.2 1.333(1.010) | 1.636(1.016) | 1.920(1.020) | 2.190(1.022)
0.3 1333(1.023) | 1.636(1.036) | 1.920(1.045) | 2.190(1.051)
04 1333(1.042) | 1.636(1.066) | 1.920(1.083) | 2.190(1.095)
0.5 1333(1.067) | 1.636(1.108) | 1.920(1.136) | 2.190(1.157)
0.6 1333(1.099) | 1.636(1.163) | 1.920(1.208) | 2.190(1.243)
0.7 1333(1.140) | 1.636(1.235) | 1.920(1307) | 2.190(1.363)
0.8 1333(1.190) | 1.636(1.331) | 1.920(1.442) | 2.190(1.533)
0.9 1.333(1.245) | 1.636(1.460) | 1.920(1.634) | 2.190(1.786)
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Comparing Table (21) with Table (22) we notice that the efficiency of

o WLy g 15 greater than the efficiency 0f Ay WAy gy for all values of 1
and p, also the efficiency of /11 MERSS W-”-i;sgs is greater than the efficiency of

Ay pes Wr4. 2 s for all values of m and p, i.e., we need less units using MERSS to do

as well as RSS,
Consequently, we can easily obtain the following table which contains the efficiency

Of Ay ynss AN Ay yops With respect to the corresponding estimators using RSS.

Table (2.3): The efficiency of A W4 A gss (Ao pess W Ao nss)

" 2 3 4 5 6 10
01 | 1.042(1002) | 1.059(1.004) | 1.065(1.007) | 1.064(1.010) | 1.059(1.012) | 1.024(1.022)
02 | 1.042(1.006) | 1.059(1.015) | 1.065(1.024) | 1.064(1.032) | 1.059(1.041) | 1.024(1.069)
0.3 1.022(1.012) | 1.059(1.029) | 1.065(1.046) | 1.064(1.062) | 1.059(1.077) | 1.024(1.128)
04 | 1.042(1.020) | 1059(1.044) | 1.065(1.069) | 1.064(1.093) | 1.059(1.115) | 1.024(1.190)
0.5 1.042(1.026) | 1.059(1.059) | 1.065(1.092) | 1.064(1.123) | 1.059(1.151) | 1.024(1.246)
06 | 1.042(1.033) | 1.059(1.072) | 1.065(1.111) | 1.064(1.146) | 1.059(1.180) | 1.024(1.291)
07 | 1.042(1.039) | 1.059(1.082) | 1.065(1.122) | 1.064(1.160) | 1.059(1.195) | 1.024(1.311)
0.8 1.042(1.043) | 1.059(1.085) | 1.065(L.123) | 1.064(1.157) | 1.059(1.189) | 1.024(1.294)
09 | 1.042(1.044) | 1.059(1.078) | 1.065(1.106) | 1.064(1.129) | 1.059(1.150) | 1.024(1.212)
099 | 1.042(1.042) | 1.059(1.062) | 1.065(1.070) | 1.064(1.073) | 1.059(1.071) |  1.024(1.05)

Based on the above table we conclude the following:

1. Ejf(/{,mm,im) and Ejf(ﬂ;wm,ﬂ;m) are always greater than 1.

2. Eff (A yersssh nss) 18 fixed in p and increasing in the set size m<4.

3. Eff (A, e pss) Changes over pand over the set size m.

4. Eff (A4 pne A srs ) 18 increasing in the set size m for fixed p.
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5 Ef (ﬁ;m,ﬂlm) is increasing in p$0.7 for fixed set size .

6. For any set size m, Eff (A upss>doses) 15 increasing and equal the value of

Eff (A s> A srs) for specific value of p, say p" (p" <1), then it continue

increasing until some value of p,say p~ (p~ > p"), finally it is decreasing

and equal the value of Eff (A,gmss-hisrs) againat p=1.

The previous theoretical results are summarized in the following theorem:

Theorem (2-3)
a. When pis known, then:

Ao s = 1 Dk 4 Z Yy is an unbiased estimator of 4,.
m(l— p)+ pZ ket
k=l k
n 2 n
b Var(A, yems) = ':Lj [m(l Py +2p(1~ p)Z(l?;L pzzg"ﬂg"—k
=
k=1 k

(m(l p)+p2 (o :’ "J

& EFF (s s sis) =
k=1

=1.

k=1

24
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4. Best Linear Unbiased Estimator

In this ection, we investigate the best linear unbiased estimator of 4, and 4,
when p is known using MERSS and SRS, and find the variances of the two

estimators. Also, we compare the variances of these estimators.

Assume that = {é; ,él,...,g? x} is a set of unbiased estimators of a parameter 8.
If Var(&;) =o}and Cov(a,-,g,-) =0 Vi#j,then:

iéx / 0';'2

at - i=f

2o}

i=]

=z

has -‘the smallest variance; Var(a )= ! ,-among all unbiased linear

2Vo!
i=l

N oA
estimators (35,0,, b/'sare constants), therefore it is the BLUE of 0 with
=1

N A
E, (2 b, 8,) =0 . (See Casella and Berger (2002) page 363, Diab (2006) and Al-Saleh

i=1

and Diab (2009))

4.1. Best Linear Unbiased Estimator for 4,

For simplicity, let

k 1 L 1
a, = and b, =)y ————.
* ?‘:rk—fﬂ ¢ ;Uc-ﬂl)z

We know from Theorem (1-2) that
3. EXgw)=ah.

and

b. Var(X ) =bA .

Therefore,

— X (k:k)

T, = is an unbiased estimator of 4,. (17

a,
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It follows that

1 2b
Var(m=Var[ ;“’J —Var(Xn) = =3 (18)
k

k k

Thus, the best linear unbiased estimator of 4, is

Xowy 0 S%Xaw
T = gl; a, ﬂlb _é by (19)
XN
k=l ﬂ'lzbk k=1 b
It follows that
2
Var(T") = 4 = {20)
p
= O
Hence, using (11) and (20) we get
[ 2
n ot w2 kg 1
» /3 A —
Eﬁ(T.i )=Var(ﬂ1m)=£x§bk =tz=1:bk :lm [;(k“‘j-i-l)) (21)
ST Yar(Ty mo A m  mia {i 1 )
J=l (k"j+1)2 i

The following table gives the efficiency of T'w.r£.4; goc (A yprss W4y o)

Table (2.4): The efficiency of T wrd. Ay go{ A yppes WA gos)

" B Argg) | BTG penss Wt Ay )
2 1.400 1.389

3 1.756 1.733

4 2.080 2.044

5 2.376 2.330

Based on Table (2.4) we conclude the following;:

1. Eﬁ”(T',/{,SRS) is always greater than 1.
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2. Eff (’1",,;1 s) 18 larger than Eff (4, e Wrd Ay i) for all of the set size m, ie,

I" is more significantly efficient than 4y and hence than 4 ye; and 2 gg.

Notice
2
a4
. X,
7" =Y uy, ) where u,, =—*+.
k=1 A G
k=1 bk
Also,
. < (kk)
o rgimss = O Vi where v,, =
kel a, a,
k=1

So,

m a:
Yo _ % B

T m 2 4
Uy, a;
Zak '
k=1 1

Vv, v Y v v
AL =1, 2 =0933 =2 =0.903 ( ¥ = 0.886,——52— =0.875

LT Uy, Uy, Uy, Ugy

Hence, the best linear unbiased estimator and the traditional one are different but

relatively close to each other.

The previous theoretical results are summarized in the following theorem:

Theorem (2-4)

b. Var(T")=2 Z .

=i 1

J=l

\-FI

Ly

m (,Z,;"k-jHJ

" Z <
(k—j+1)°

1

(k- j+1)°

is the BLUE of 4,.
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i 1 2]
T LErm) |
L] [Z 1 ]

S (k= j+1)

- pe

4.2. Best Linear Unbiased Estimator for 4,

We know from Theorem (2-2) that
a. E(l,)=01- P2y + pacdy,

and
b Var(Yys) = £~ p)* +2p0-p)a, +b,0° ).
Therefore,
Y[t'.k} . . .
», = —L . i5 an unbiased estimator of 4,. (22)
(-p)+pa,
it follows that

Var(a )=Val{ Yt )= 1 Var{Y;,.,)
* 1-p+pa,) (-p+pa)

Using (8) in the previous equation we get

1...p)2 +2p(1- p)a; +p2bk . (23)
(-p+pa)

Var(w,) =4 ¢

Thus, the best linear unbiased estimator of 4, is

. & (1 P"'Wk) [E43 (1‘P+Pak)2
_ (24
glﬂ(l p) +2p(1- p)a, + p* be) ?r:ﬁql(l-p)’+2p(l~p)ak+p’bﬂ 4

It follows that

3 Y (1-p+pa) Z @-p+pa,)

Var(e' )= Var( 2 2
£1- p+pa, 2(-p): +2p(-pla, + ', )] & A21-p) +2p(- p)a, + p*b

I (- p+ pa, ) Var(Ysy) ("' (-p+pa) T
& (1-p +200-pla, +p?8,) | &= {a-p)? +200-pda, +p%,))

Applying (8), we get

SPTE S (1-p+pa) (1'P+P" X 2
Vi = )
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Hence, using (15) and (25) we get

-

A

Eff (@ Ay gps) =

Var(A, SRS
Var(o')

(- p)+ pa )

pY +2p(-pla, +p'b;)

J/4

(1~ p)+ pa, )2

Table (2.5) gives the efficiency of w'w.r.t.ﬂ; sxs & A prss WL Ay gps)

S(a-py +2p(-p)a, +p°b,

Table (2.5): The efficiency of ©'wrs.A) s (A ypss W44 5p5)

" 2 3 4 5
P
0.1 1.005(1.004) | 1.009(1.008) | 1.013(1.012) | 1.016(1015)
0.2 1.017(1.016) | 1.032(1.031) | 1.046(1.044) | 1.057(1.055)
0.3 1.037(1.035) | 1.068(1.066) | 1.095(1.093) | 1.119(1.116)
04 1.063(1.061) | 1.115(1.113) | 1.160(1158) | 1.199(1.197)
0.5 1.095(1.095) | 1174(1173) | 1.241(1.241) | 1.300(1.299)
0.6 1135(1.135) | 1247(1.247) | 1.342(1.342) | 1.425(1.425)
0.7 1.184(1184) | 1337(1336) | 1.467(1467) | 1582(1.581)
0.8 1242(1.241) | 1446(1.444) | 1.623(1.619) | 1.780(1.774)
0.9 1313(1309) | 1.583(1574) | 1.821(1.808) | 2.085(2.017)

Based on the previous table we conclude the following:

1. Eff (w',ﬂ; ws) is always greater than 1.

2. Eff(@,4,4s) is increasing in the set size m for fixed p, and also increasing

in p for fixed set size m.

3. Eff(@,4, ) is larger than Eff (4, pees wrt Ay ) for any set size m and p,

A

A

A

ie, o is more efficient than 2,,,.. and hence than 4, . and 4, g -

(26)
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Notice

m'-i)’ . 1-p+ pa; / (-p+p)
T 250 - pla, + 07, | B l(l—p>2 +20(1- pa, + P, |

n
& = Yy » Where
k=1

¢ (1-p+ pa,) / (-p+pa) .
=M= p) + 2001~ pla, + p'b, )] 2= 0 +200~p)a, + 07, |

m

s m(l- p)+ps & ica

k=1

The previous theoretical results are summarized in the following Theorem:

Theorem (2-5)

(1 - p+pa, )};t:n L
21— p)* +2p(1- p)a, + p°b,

L@ =
) (1= p+pa )

Z.ﬂila p) +2p(1-pla, + p’b,

is the BLUE of 4,.

3 (1‘P+Pak)2
b. Var(a)’) = /‘g k=1 -((_1:_’9)2 +2p(1_p)ak +P2m

(-p+pa,) J

= (- p)* +200- p)a, + p*v,

C($ eprmy )]2

c. Eﬂ(w',izsm)=%ﬁ&;-). { =!( -p) +2p(1- p)a, + p'v,

3 (l —pPrpa )z
mé (-0 +2p(1- p)a, + p*
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5. Estimation of the Correlation Coefficient Using MERSS When 4, and 4,

are Known

In this section, we consider the estimation of p when 4 and 4, are known
using MERSS and SRS, and find the variances of the two estimators. Also, we

compare the variances of these estimators.

Diab (2006), (see also Al-Saleh and Diab (2009)), derived the following

formula for the variance of ;7 based on SRS:

mn

A ZX"Y'
’ Where p]SRS = ’;;)12‘2 (27)

3p% +14p+3

Var(;)ls;zs)z

Now, suppose that 4, and 4, are known, then,
E(X (k;k)Y[k:ﬂ) = E(E(X (k;k)Y[k;k} | X (k) )) = E(X (k:k)E(Y[k:k] | X (kck) ))

=E X(k:k)((l -+ p%X(k:k)J]

p
=E| (1- p)’lzX(k:k) + P%Xz(k:k)]
\

= (1~ PILE(X 4y )+ p%:—E(Xz(k:k))

~(- At o2 B ).
But,
E (X (2,‘._” )= Var (X (k:k) )+ [E(X (EK) )]2
& 5| < 1 ’
Zl J+1) ﬁ1[§k—j+lil'
Then,

E(X(n)}fku) (- P)"’q/’hzk_ +1 {Alz(k }_'_1) [Zk:k_;_'_l]]

i=1 J=1
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S b e

Hence,
) 2
E(ZX(k:k)YEk:k]J J'IAQC 2112‘9 +/1‘12'22[2 . l] +1‘122Sm' (28)
k=) k=1 1=1k jt
Thus,
E[ZX(I(LI:)Y[k;t]]-H‘IAQSm
k=1
m 1 k 1 2 =p- (29)
C - S
WACo =y .ﬁmg[;k_m]
For simplicity, let
k k
a,. =
) gk—m ,z:‘(k 1+1)
Hence,
ZX {ki)Ylk'-kl Z X, (u)Yucn
k=1 _Sm =t _Sm
. Ay _ Ak o0

CS+Z

k=1

2,

mk—-j+1

k=1

Puzrss = [

]z C,-S, +iaf

is an unbiased estimator of p.

Notice that ,;1 winss 15 the naive (unmodified) estimator.
It follows that

A ZV"’ (X (t:k)Y[H])
Var(pyuerss) = = . (3 1)

Afzg[cm -5, +z"';a,fJ

It is clear that, _
Var(X, (k:k)Y[-kuk]) = EVar(X (k:k)}fk:n [ X an )t Var(E(X, ey Lk:k) | X (k:k)))

= E(X (zk:k)Var( ) XD HVar(X o EQpn | Xon)) -
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But,
B Oy X)) = B or Y1

= E((l PY Xl +200- p)jj Xo n)

=(1-p) LEX, u)) +2p(1- P) 2 E(X a—.&)) (32)

Furthermore,
1 J& 1 7
(Kiwy) = jlzE(k —j+1) ”’[;k-jn]
= &b, + A (33)
Also,

3 [ X
E(X(“))-% jx - exp[ JJ) ’exp[-——}:]dx.

But,
_ _X ki S k-1 ‘_fx_i) ‘{ij_lf’
¢ ”p[a)) 2(1] PR i VY
Therefore,
B =—3. [ ]( l)fj x{(’*”"}fx
A=
But,
T GHDx), 64
k ex‘{ A )d"(w)"
Thus,
H—k_k—l k-1 N 6/1, 6 k—l[k 1) (__1)1‘ ”
E(X o) = %g[ ; }( Dl o)) W ey (34)

Now, applying (33) and (34) in (32} we get
E(X(i.k)Var (Fin | X, ki) ) =

1 e ¥ 1k -1) (-1y
=0 A’z’g{zr(k j+? +L_Z=;k_j+1”+2pa {mg[ J(1+j)‘}

= _
- ,13,1;[(1 - )b, +(1- p)i(a,)* +12kp(1 - p)Z[ ) (1(+1) ] (35)
= N
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Now,

A y2
Var(X(H)E(Y[“] * X(k‘]t))) = Var(X(H‘)(l - p)j'l + pZX(kk)]

2
2
= E[X (k:k)(l -piLt P%:‘X (z.t:k)} - \:E{ (x: - Py, + P A X k)]}

(X(k ni- 9)221 +2X; P PP 4 +p 'ﬂ%"X ;k:k)) "[(1 - PYAREX )t P %’E(X (21::::))]

A A

2 }'2 . 2
=(1—p)zﬂ;E(X(zﬂ))+2(1-—p)p%—E(X(3ﬂ))+p i:E(X(u)) [(I“P)%E(X(u))"'PIE(X(H;))] (36)

Also,
4 k't X K-t _x*
EXien) =7 j’x (lvexp[—-—z}) exp[ A}dx
k-l(k 1]( 1” p[ (Jy+1)x)dx

But,

T4 (j+)x 247

F °"‘{ A }" e
Thus,

KEME-1) 24 1y 2

E(X(“))_ZE[ j )( N —0x 1+ ) 24 312( }(Hj) 37)
Now using (5), (33), (34), (37) in (36) we get
Var(X g EMean | Xon)) =

-1’
{(1 p)’ ,12,12(1; +a; )+2(1 plp—— [6kﬂ32( ](1(4-;)}

£
o

=0

+jy

j=0

24“1"2-1(]‘ 1] -’ ) [(1_p)jlq(ﬂ1ak)+p%(l.zbk+/1,2af)]} (38)
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Also, using (37) and (38) we get

Var(x ity Xty ) =

M;{(l pY*(b, +a} }+201- P)F{ﬁkz( )(1(-_»13})‘}

(24k§[k 1) Ch J [a- p)a,)+ plB +ak)]2}

J=0

Var(X wky ) =

,11;7{2(1 p)2(b, +ak)+2401- p)p(kzl[ J(D )+p{24k§(k;1)(1( By ) [a- 2@+ olb, +a2)
=0

j=0 1+,
Var LZ; X (u)Y[ml] =
g {2(1 % Z (b, +a?)+ 2401 p)p[ik‘z: k 1 ] ( *}Mj 2[";1}%}—;[0*;0)(&%;9@.+a§)]2}
Thus, )
Var(Pusess) =
{2“ p) Z(b +a;)+2401-p) ZkZ( J(LD) ) ( * ki[ J ;’J—g[(lﬁp)(a’)er(b‘ M:)]z}. (39
(c.-s. +§af)z
Hence, using (27) and (39) we get
B (P Prs) = ).
Var (0yuerss)
Gp? +14p+3)(c,, -5, +Z‘a3]2 {

{2(1 _p)? Z(b +a?)+24(1- p) ikz(" IJ (_l)_j‘J+p2(24ik*—l(k;1](——U_1;J—zm:[(l-ﬂ)(a*)+p(b,+af)]2}

ror o] d+)) = a+ 7 k=1
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The previous theoretical results are summarized in the following theorem:

Theorem (2-6,

m
Z X (k:k)Y[k*]
k=1 _ S

A 2’1 ,‘Lz n
= is an unbiased estimator of p.

a.  Perss -
[Cm -S, +ZafJ

k=1

i Var (X xy s )

k=]

zfa;(c,,, sz]

b. Var(;;WEm) =

Var{pses)
Var(pymrss)

m 2
@3p? +14p+3)[c,, -5, +Za§)

k=1

C. Eff (Pirsss Prses) =

{2(1 0) Z(b +a?)+24(1- p)p[iki(k l) c’ ) [4ik“( M:)) J Z[(] pya, +plb, +a,‘)]2}

-+

k=1 j=0 k=1 =0

Table (2.6) contains the efficiency of ;)1 wizrss W4 ;:lm .

Table (2.6): The efficiency of ;)IMERSS wrt ;,m

" 2 3 4 5
fol
01 1.700 2.404 3.091 3.752
0.2 1.681 2.359 3.014 3.644
0.3 1.670 2335 2.977 3.591
0.4 1.664 2.322 2.958 3.565
0.5 1.661 2.316 2.948 3.555
0.6 1.659 2312 2.945 3.553
0.7 1.658 2312 2946 3.556
0.8 1.658 2313 2.950 3.564
0.9 1.658 2315 2.955 3.573
0.99 1.659 2317 2.961 3.583
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Based on Table (2.6) we conclude the following:

1- The efficiency of E’lmzess wrt. ;’1333 is always larger than 1.

2- The efficiency of ,;,Mgm wrt. p.gs is increasing in the set size m for
fixed p.

3- The efficiency of p,, e WL Pigs is decreasing in p for fixed set size ni.

6. Estimation of the Correlation Coefficient Using MERSS When 4, and 4,

are Unknown

Suppose that 4, and 4, are unknown, then we can replace them in ;,SRS by

Aises and Aases to get

i Sy,
i=1

Pasgs =4 ~
mAisrs Azses

-1 (41)

Since 0< p <1, we modify this estimator of p by:

0 if Pygs <0

P;m =<{Prgs f 05 pygs <1

1 if ;;2 s > 1
Similarly,
iX (Hf)Yik:kl
-8,
s =S P 42)

c,-S, +iaf

k=1

n
o e,
where 1, . =& since Azmrss dependson p.

37



© Arabic Digital Library - Yarmouk University

Since 0< p <1, we modify the estimator of pby:

0 ’f ﬂim}z&&'<0
p;MERggz‘p2MERSS lf OSPIMENSI

A
1 i P2 srss > 1

L

We compare the bias and MSE of the two estimators Pr s AN Py s Via

simulation, using (10000) iterations.
To simulate (X,Y) from DBED (4,4,,p) , lliopoulos (2003) rewrote the pdf of

Downton (1) as an infinite mixture of independent gamma distributions with

geometric mixing distribution as (See also Diab (2006) ,Al-Saleh and Diab 2009) ):
f&y4,4,0)= Z”(k; Py (A, - 12))) PR 6L N | o)) 8
k=0

where T,(.;8) is the pdf of gamma(e, ) and alk;p)=01-p)p* k=012, is the
geometric pmf, Let K be a random variable with this geometric pdf. Then Xand Y
are conditionally (given K = k) independent gamma random variables with ¢ =k +1

and B, =A(-p), B,=24(1-p), respectively. Also, the unconditional distribution of

(X,7)is a DBED (4, %,p).
The algorithm of simulating observations form the DBED can be done using the
following steps:

1. Givend,4, and p; simulate m random numbers from the geometric
distribution withp = (1- p), sayk,, i=L,...m.

2. For each k,, simulate two independent random variable X,and ¥, where X

is from Ik, +1;4,(1- p)), and ¥, is from Tk, +1;4,(1- p)).
3. Use the data in (2) to compute the values of ;;; s and ,;; ERSS

4. Repeat Steps (1-3) 10000 times to get 10000 values of l;;sxs and ;:; MERSS *

Bias and MSE of each of the estimators { £; s 23 serss) are given in Tables (2.7), (2.8)

respectively, and the efficiency of p} ,pasc WS- P> s 18 given in Table (2.9).
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Table (2.7): The bias of p; g (P} zas5)

" 2 3 1 5

0.0376439 0.0584117 0.0586485 0.0548856

o1 (0.0107227) | (0.000724853) | (-0.0120098) | (-0.0204013)
00523795 | -00233886 | -0.0184251 | -0.00529215

02 (0.0793768) | (0.0801307) | (0.0916448) | (0:104122)
0135611 | -00981019 | -0.0844414 | -0.075403

03 (0171955) | (0.163776) | (-0.176105) | (-0.18657)
-0.225323 0176568 | -0.149973 0126892

04 (0.257008) | (-0.246904) | (-0.257058) | (-0.266765)
0310434 -0.239222 -0.205666 -0.186279

05 (0.342278) | (-0.32875) (-0.336086) | (-0.348883)
-0.390079 -0.312983 0270314 -0.240321

o6 (-0430483) | (-0413311) | (-0418829) | (-0.431649)
-0.468765 -0.378034 -0.329873 -0.290391

o7 (0513701) | (0.491661) | (-0501695) | (-0.513443)
08 0538559 -0.439845 -0.375437 -0.330727

(0590251) | (-0571455) | (0.581406) | (-0.595339)

iy 061117 -0.493015 -0.416008 -0.373616

(-0.672461) | (-0.645387) | (-0.661558) | (-0.679775)
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Table (2.8): The MSE of 9} s (53 pznss)

1/t

2 3 4 5
0.0442721 0.0601832 | 0.0582355 | 0.05557%4
o1 (0.0293167) | (0.0238382) | (0.0183293) | (0.0140678)
00490005 | 00637464 | 0.0650449 0.067288
02 (0.0370344) | (0.0348262) | (0.0801238) | (0.0275962)
00707885 | 0.0809181 0.0807965 | 0.0801482
- (0.0618572) | (0.0598328) | (0.0552902) | (0.0529677)
0.105702 0.106769 0.105989 0.102262
04 (0:102499) | (0.0962038) | (0.0934151) | (0.0925348)
0.154502 0.142506 0.132283 0.127251
0> (0.156786) | (0.147673) | (0142743) | (0.144423)
0.214792 0.187929 0.167288 0.15389
06 (0227261) | (0210604) | (0.205588) (0.20876)
o 0288881 0.235174 0.204804 0179919
(0308422) | (0.284579) | (0.283881) | (0.287066)
0 0.364987 0.289395 0.238071 0.204345
(0397526) | (0371836) | (0.370711) | (0.378874)
0 0.453857 0.340542 0.26872 0.230149
(0.504155) | (0.463529) (047161) (0.485024)
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Table (&9): The efficiency of Pl s Pi -

" 2 3 4 5
p
0.1 1.51013 2.52465 3.17719 3.95083
0.2 1.32311 1.83041 2.15925 243831
0.3 1.14438 1.3524 1.46132 1.51315
0.4 1.03124 1.10982 1.13461 1.10512
0.5 0.985437 0.965008 0926721 0.881097
0.6 0.945132 0.892336 0.813708 0.737164
0.7 0.936641 0.826392 0.721445 0.626752
0.8 0.918146 0.778287 0.6422 0.539347
0.9 0.900233 0.734673 0.569792 0.474511

Based on Tables (2.7, 2.8 and 2.9) we conclude the following:
1- The absolute value of bias (0} ) is increasing in m >3 for fixed p.

The value of MSE (7, . } is decreasing in the set size m <4 for fixed p.

N
)

The absolute value of bias (0} , ) is decreasing in the set size m for p20.2.

Q2
¥

e
]

The value of MSE (0, ... ) iS decreasing in the set size m for p 2 0.4.

5- The efficiency of P}, ue Wt P; s 16 larger than 1 for p <0.4.

7. Estimation of 4 and 2, Using MERSS When p is Unknown

A

We noticed that the formula of A= ZX ) does not depend on p,

13
Sm- k=1
while 4, .. does. Suppose that p is unknown, then we can replace it by P sirss iNL

the formula of Z; werss 10 get

" 1 m
A pigrss = ~ -, 2 Y;kﬂ (43)
(1= 03 ,ers5 ) + P2 s O
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Bias and MSE of each of the estimators (4, ge» 4, ypess ) 2T€ given

AN

A

in Tables (2.10),

(2.11) respectively, and the efficiency of y - w.mr.}:2 o 18 given in Table (2.12).

Table (2.10): The bias of 4, (4 yzess)

2 3 4 5
P
2000279574 20.00168242 -0.00472256 -0.0040465
1 (0.0020933) | (-0.000984182) (0.00819218) (0.0191077)
0.00016427 -0.00109245 0.00272019 0.000303165
02 (0.0160948) (0.0359209) (0.0563623) (0.0808028)
~0,0000583597 | -0.000877509 000441161 0.00103426
03 (0.0370854) (0.0693029) (0.0948296) (0.131574)
0.00506541 -0.00164893 0.00856499 20.00427827
04 (0.0595644) (0.103428) (0.138227) (0.192773)
9.46511x106 0.00143187 0.00821915 -0.00373388
05 (0.080832) (0.140811) (0.19256) (0.238901)
0o -0.00193361 0.000510702 0.00547577 0.00388679
(0.103372) (0.170413) (0.228127) (0.289384)
0 -0.00413912 10.00132456 0.00765032 20.00726503
(0.119923) (0.202725) (0.276109) (0.341083)
05 -0.00109334 -0.00267304 0.00131327 -0.00319695
(0.141536) (0.235878) (0.315041) (0.396119)
05 -0.0056615 -0.0036788 0.000308504 -0.00244952
(0.169933) (0.267179) (0.355221) (0.453053)
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Table (2.11): The MSE of 4, (&) ymass)

2 3 4 5
0.499551 0.333345 0.249649 0.19864
o1 (0.491253) (0.331635) (0.248509) (0.210132)
0.499826 0333675 0.257373 0.200124
02 (0504642) | (0349085) | (0271994) | (0.228403)
0.50099% 0.329593 0.253507 0.200313
o3 (0514995) | (0.362998) | (0.285276) | (0.244522)
0.507055 0.337384 0.253354 0.201426
04 (0528374) | (0378078) |- (0.302438) | (0.272699)
0.500087 0.333134 0.258028 0.195592
05 (0.539565) | (0.387088) | (0.319192) (0.30074)
0.498256 0333864 0.251646 0.207673
06 (0.543571) | (0397733) | (0.333728) | (0.330537)
0.501187 0.331669 0.259182 0.199612
o7 (0545423) | (0.403483) | (0.350917) | (0.350742)
0.499357 033138 0.253013 0.202879
08 (0.54799) (0415925) | (0.374888) | (0.385361)
o 0.495889 0.329498 0.242145 0.197268
(0.548266) (0.424497) (0.384798) (0.426565)
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Table (2.12): The efficiency of 7, e Wrt Ay g

" 2 3 4 5
P

01 1.01689 1.00516 1.00458 0.945314
0.2 0.990457 0.955856 0.946246 0.876186
0.3 0.972817 0.907974 0.888635 0.8192

0.4 0.959652 0.892367 0.837706 0.738633
0.5 0.926834 0.860615 0.808381 0.650368
0.6 0.916634 0.839418 0.754045 0.628289
0.7 0.912654 0.822014 0.738587 0.569113
0.8 0911251 0.79673 0.674904 0.526466
0.9 0.904468 0.776207 0.629278 0.462457

Based on Tables (2.10, 2.11 and 2.12) we conclude the following:

1

F2

h

Q2
i

The absolute value of bias (4, o ) is increasing in the set size m>3 for fixed

The value of MSE (4, g ) is decreasing in the set size m for fixed p.

L)

There is no specific pattern for the absolute value of bias (A2 s )-

4 The value of MSE (4, ;. ) is decreasing in the set size m for p20.5.

5- SRS more efficient than MERSS for p 2 0.2.

8. Concluding Remarks

Based on the previous results obtained in this chapter, we can conclude that
moving extreme ranked set sampling with concomitant variable gives more efficient
estimators for the parameters of Downton's bivariate exponential distribution than
the corresponding ones using simple random sample when other parameters are

known.
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CHAPTER THREE

Estimation of the Parameters of Downton’s Bivariate Exponential
Distribution Using the Method of Maximum Likelihood Estimation
Based on MERSS

1. Introduction

In this chapter, we are interested in estimation of the parameters of DBED
(A4, 4,,p) by using the method of maximum likelihocd estimation (MLE) based on

MERSS and compare these estimators to the corresponding ones using SRS. The
likelihood function based on MERSS is given by following;:

W(y)= H f: Xy Tt (Xeys Yirars Ay A5 P) s
k=1

where ¥y = (4,,4,,p) is a vector of unknown parameters.
The maximum likelihood method for estimating the parameters of DBED (4, 4,,0)
requires maximization of the likelihood W(y). Unfortunately; maximizing this

function  analytically is hard, because of the complexity of

St gy Toasy Feaons Yierrs Ao das ) therefore; in this situation we consider numerical

methods. The asymptotic efficiency of the MLE based on MERSS with respect 10
MLE based on SRS, is obtained.

» Fisher Information Matrix and Asymptotic Efficiency

The asymptotic efficiency of the MLE's of parameters, under some regularity

conditions, is computed from the inverse of the Fisher information matrix. As 7 goes

to infinity, the distribution of the MLE, Oras, is asymptotically unbiased and also

asymptotically normal with mean 0 and var-cov matrix equal to the inverse of the
Fisher information matrix, i.e., g?ms —2 3 N@,17'(0) (see Myung and Navarro
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I P
Iz (1:1) where I (i,i) represents the i'h diagonal

2005)). So Aeff| Buas;Onas |=
( )). S0 eﬂ‘( 1MLE ZJW..E) 176.1)

element in the inverse of the Fisher information matrix. In ord
on we start with W (y).

er, to obtain the Fisher

information of the Downton's bivariate exponential distributi

In particular, it is easier to work with log(# () than with #(¥), and we know that

both W{y) and log(# (7)) have the same maximizing value. Thus, in our case let

W denote the log-likelihood function ...
W' =108 fipntiny 06 Vs 522 P)

= log{fx,y (x, YIk(1 - eXI{— i—))""}

A )

_ 1 X y 2(mxy)’? ( x),,_.
=logl{ ——— &P\ | 5T I,| ——57——|xk(—exp| ——

og{ﬂq%(l—p)m[ [ﬂq(l—p)Jrﬂq(l—p)Hx L,uﬁ)/z(l_p)}x ( A ) |

A
= —log(A A, (1 - P) ~| 4 )1 1| —2P) logk + (k- 1)1 [1— (_-"—D 1
og(4h4,(1 - p)) (ll(l—p)+12(l—p) +log L%lz)%(lfp) +loghk + (k —D)log| 1=exp| ~ = 4y

=L+N
where,
L= —logulzz(l—p))—[——"-—;r Y }mg; _ag)®
21(1_:0) Az(l"p) ° (11’12)%(1—9)
and
N =logk+ (k- l)log[l —exp(—- i-D
Also,

© Zk+1 A
L()=1,()= 2(%) /k!(k +1), z= (&ii?()l ) (See Shi and Lai (1998)) (Note
-0 (1-p

that what was written by Shi and Lai (1998) has a misprint in the summati

on that

goes from 1 to « where it must be from 0 tow)

Iz(z)_—.I,'(z)=i(§) ' /’c!(k+2)!
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In our case, based on Shi and Lai (1008), we et the following:

X X
it
w1, x (@ ,{ 2 },( 2p) ]+(k_]) A) A

\awbe-n) \an)a-» 1_exp[_%)

1 ]1 %
w'_ 1.y (29" Il{ 2(pfy)/ }5{ 2(pi:/y) )
o, A4 AP i) ia-p (A=) ((4A)2=P)

) Y
ow’” 1 X y 1+ p va)/ ]1[ 2(#;}’)/2 }51( 2()0!:;}‘)2 .
o Ao AA-p AHA-pr  A-A\ A ka-p) (" a-p) ()2 a-p

Also,
% 2py)
%y, X (pxy)ff[ }
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/ %
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aw'y _ (L) 4N},
] o) (&)
But,
2o ho,
Where
F(x)y=1- exp(— -Z—) :
And
Fl(x)= 3’;;? = {'zxj) °"p(_ _;:_)
Thus P F'(%)
o) _fund) -w)
It follows that

oN ’ 2 I(x))l X )dx\}
BA) =(k-1) [j[F(x) SXan
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Substituting the values of F, F'and f(Xg,,) in the previous equation we get
0 (k) P

B, =E(g%] =(k-1)

o

J

L

(it

2

1- exp[— %}

et

J

Thus, we can numerically find the values of B, at different k's, the following table

contains these values:
Table (3.1): Values of B, for different k's

B,

0

0.308228

0.888889

1.54167

k
1
2
3
4
5

2.20593

Therefore, it is easy to get the following table which contains the values of Y B, for

different set size m.

k=1

Table (3.2): Values of Y’ B, fOr different m
k=1

B#

0.308228

1.197117

2.738787

m
2
3
4
5

4944717

49



© Arabic Digital Library - Yarmouk University

Thus,

ow' 2 oL :
ey AL g | 2
IZE( aﬂn) EE(aA Z™ @
But,

iE _a-l; :imm f“'(u)y[n]( y)dxdy

k=1 a’l\ k=l 9o ﬂ‘l

on 0 aL »
= I(Eﬂ Fer (Y)Y H(FG0) dxdy

Also,

F m+l __F
Zk(f" Q) =—Z(F(x)) [( (x;?(r) : (x))

_(FO)=D(m +DF ) ~1) - (Fee)™ = F(x))

(F(x)-1)’
_m(F ()™ —(m+DF )™ + 1 3
(F(x)-1)’
Using (2), (3) we get
22l ar \* (F(x)-D(0m + WFE)™ -1~ (F )™ - F(x)) d B,
I, = S)![ ] (F0)— e fx J'(x ») xdy*‘;

Now to obtain I,,,

2 2 2 2
E ._aly_ =F _gl:.— + _a_j}r_ = E(QL_] + Zero.
ox, oA, o, EY

Thus,

(&) e RO . @

Q

Also to obtain I,,
- (oW
I,=YE 2 —
” §E(amj

50



© Arabic Digital Library - Yarmouk University

Co,

e

A

=1 o \mEQY™ =l UECHTIL 7 (x, yydacly
F -1’

Gimilarly to obtain I,

225(%6;)) maﬂ@}

Also to obtain Tx.

Finally, to

Thus, the information matr

where,
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33 é ap }
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I =(I 1y "Izalsz)/D;
I =215 ’Ixslzz)lD's
I;s = -(111133 “IlsIn)!D;

113

Iy

33

11.2 =—(I .15 _113132)"[);

2 2
oL m BN)
1 + —_—
Bp] kz; ap

(Fx -1

ix and its inverse are

and I;;ER_gs(Aq,ﬂQsp): I;l I;Z

I, = (s _113131)”);
I =1 "112121)”);

(F(x)) ' —(m +1)(F(x)) +1 e (%, y)dxdy
(F(-1’

= N
+y Bl ——
) ; (8}.2 ap}

n (W \_ &g O
Is ,,Z a%ap) 2‘5(6169

R B \mE” e DEE L e iy
R

TT(BL) M—_____,WHXF("M Foy oY) -

Iy

L,

5)

©)

@

@

I, Ty
L
I Is

51



© Arabic Digital Library - Yarmouk University

where,
Dlel(I:'QIB —123132)_112(‘[21[33 _123131)'*'[13(!21132 —‘12213:)-

We want to find the asymptotic efficiency, to do so, we need to calculate

I-l.xmzss(ﬂ.l,ﬂq,p) and I_]SRS(AI,Az,p) .
For example, if p=0.1and m=12, then

285117 0234834 0216227

Iy s Ay, p) =] 0234834 2.04294 -0339328{,
0216227 -0.339328 2.02549

0358282  -0.0488976 -0.0464394

I amss (4, 4,, p) = | -0.0488976 0.0510174  0.0906888 |.
-0.0464394 0.0906888  0.513858

Also, By Shi and Lai (1998),
20318 -0.1504 -0.14138

Iog(h, Ay, p)=| -1.1904 20318 -0.14188,
014188 -0.14188 1.7342

0.4999 0.04999 -0.0464394

I s (A, A, p)=10.04999 05 0.0906888 |.
0.04999 004999  0.548

If p=05 and m=5, then

50.587 39.7937 29.9042

(4,2, p)=|307937 435056 -7.0958,
200042 -7.0958 261303

I MERSS

0.109928 -0.103057 - 0.0153789

I samss (A, A, ) =| -0.103057 0.119703  0.0150447
~0.0153789 0.0150447 0.00599552

Also, By Shi and Lai (1998)
26.8482 -23.1518 -11.2408

Ioo(h, A, p)=|-23.1518 268482 -11.2408{,
-11.2408 -11.2408 237.305
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02 018

I'ses (4, 4, p)=| 0.18 02
0.018 0.018 0.00591925

0.018

0.018

Table (3.3) contains the Asymptotic efficiency of the MLE using MERSS wrt the
MLE using SRS.

Table (3.3) Asymptotic efficiency of the MLE of i, i\z and ;A)

the MLE using SRS Aeff(1), 4eff(2) and Aeff (3), respectively.

using MERSS writ

p m Aeff(1) Aeff(2) Aeff(3)
2 1.39555 0.98006 1.13653

o1 3 1.74488 0.90143 1.22220
4 2.06092 0.82770 1.28289

5 2.35068 0.76106 1.328%

) 1.38428 1.01723 1.11380

0 3 1.70152 0.95447 1.17305
r 1.97965 0.88414 1.21357

5 2.22875 0.82137 1.24456

2 1.37993 1.06299 1.10701

3 1.66157 1.01664 1.14524

03 4 1.89947 0.95662 - 1.16983
5 210757 0.90092 118890

2 1.38666 1.1189% 1.11372

” 3 1.63456 1.09152 113273
‘ 2 1.83551 1.04416 114167
5 2.00708 099715 1.14791

2 1.40688 1.18673 113302

o 3 1.62480 1.18019 1.13273
1 1.79286 1.14678 1.12430

5 1.93162 1.10886 111501
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2 1.44241 1.26806 116461
3 1.63426 1.25022 1.14339
06 1 1.77221 1.24462 111452
5 1.87954 1.23494 1.08602
2 149477 1.46880 1.20833
o7 3 1.66344 143378 1.16287
4 1.77190 1.39956 1.10926
5 1.84638 1.36319 1.05727
2 1.56610 153558 1.26391
o5 3 1.71285 152146 1.18885
1 1.79012 1.50174 1.10527
5 1.82789 1.48033 1.02549
2 1.65876 1.62635 133022
0 3 1.78229 1.60730 1.21748
4 1.82415 1.57385 1.09827
5 1.84563 1.55008 0.98728

Based on the previous table we conclude the following:
1. Aeff (A ppssage > smsaas) 18 decreasing in p<03 for fixed set size and

increasing in p > 0.4 for fixed set size m.

2. Aeff (A ypnss s> swsazs) 18 larger than 1 and increasing in the set size m for

fixed p.

3. Aeff( A ymosauss A2 ssaae) 19 1arger thanl for p>0.5 and increasingin p for

fixed set size m.

4. Aeff (A rmssrnes A smsras) is decreasing in the set size m for fixed p.

5. Aeff (Oranssrans Psrsaas) 15 inCreasing in p 20.4 for fixed set size m.
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6. Aeff(Drmnssrass Prsaas) 18 increasing in the set size m for p<04 and

decreasing in the set size m for p=0.5.

3. Concluding Remarks

Based on the previous resulis obtained in this chapter, we can conclude that
some of the estimators obtained using maximum likelihood estimator based on
moving extreme ranked set sampling with concomitant variable gives
asymptotically more efficient estimators for the parameters of Downton's bivariate

exponential distribution than the corresponding ones using simple random sample.
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CHAPTER FOUR

CONCLUTIONS AND SOME SUGGESTED FURTHER WORK

This chapter concludes the thesis. A summary of the conclusions is presented

in Section 1, while Section 2 contains some suggestions for future work.

1. Conclusions

Moving extreme ranked set sampling is a useful variation of ranked set
sampling and more applicable since it allows for an increase of set size without
introducing -extra ranking errors. In this procedure, only two extreme values
(maximum or minimum) of sets of varied size was identified (by judgment) for
quantification. In this thesis, the main goal was to estimate the parameters of
Downton’s bivariate exponential distribution using MERSS with concomitant
variable. It was assumed that X can be ranked visually while ¥ was highly
correlated with X . It was shown that the use of MERSS with concomitant variable
gives more efficient estimators for the parameters of Downton's‘ bivariate
exponential distribution than the corresponding ones using Simple Random Sample.
In addition, we derive the best linear unbiased estimators of 2,and 4,. It was shown
that these estimators were very close to the corresponding naive estimators.
Moreover, Fisher information matrix of Downton's bivariate exponential
distribution was derived and used to find the asymptotic efficiency of the maximum
likelihood estimator of each of the parameters using MERSS with respect to those
based on SRS. It was shown that some of the estimators obtained using MLE based
on MERSS were asymptotically more efficient than the corresponding ones based on

SRS.
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2. Some Suggested Further Works

There are other situations where MERSS can be used. The following are some

suggested further work on this topic.

*
"

ry
..0

L/
0.0

Estimation of the parameters of other bivariate distributions such as
Morgenstern type bivariate exponential distribution using MERSS.
Estimation of the parameters of Downton’s bivariate exponential
distribution using double or multistage MERSS.

Estimation of the parameters of Downton’s bivariate exponential
distribution using bivariate MERSS.

Testing hypothesis about the parameters of Downton’s bivariate
exponential distribution using MERSS.

Bayesian estimation of the parameters of Downton’s bivariate exponential

distribution using MERSS.

57



© Arabic Digital Library - Yarmouk University

References

. Al-Odat, M. T. and Al-Saleh, M. F. (2001). A variation of ranked set sampling.

J. Appl. Stat. Sci. 10, 137-146.
AlSaadi, S. D. and Young, D. H. (1980). Estimation for the correlation coefficient
in a bivariate exponential distribution. J. Stafist. Comput. Simul. 11, 13-20.

. Al-Saleh, M. F. (2006). The Basics of Ranked set sampling, Chapter 21, 331-348 in

the book titled "Recent Developments in Ordered Random Variables", Edited by
M. Ahsanullah and M. Raqab. Nova Publisher, USA.

. Al-Saleh, M. F. and Al-Kadri, M. (2000). Double ranked set sampling. Stat. Probab.

Lett. 48, 205-212.

. AlSaleh, M. F. and Muttlak, H. A. (2000). Bayesian estimation using ranked set

sampling. Biom. J. 42, 489-500.

. AlSaleh, M. F. and Abu-Hawwas, J. (2002). Characterization of ranked set

sampling Bayes estimators with application to the normal distribution. Soochow J.
Math. 28, 223-234.

. AlGaleh, M. F. and Al-Omari, A. (2002). Multistage ranked set sampling. |.

Statist. Plann. Inference 102, 273-286.

. Al-Saleh, M. F. and Zheng, G. (2002). Estimation of bivariate characteristics using

ranked set sampling. Austral. New Zealand ]. Statist. 44, 221-232.

. Al-Saleh, M. F. and Al-Hadrami, S. (2003a). Estimation of the mean of the

exponential distribution using moving extremes ranked set sampling, Stat. Pap.
44, 367-382.

10. Al-Saleh, M. F. and Al-Hadrami, 5. (2003b). Parametric estimation for the

location parameter for symmetric distributions using moving extremes ranked

set sampling with application to trees data, Env. 14, 651-664.

11. Al-Saleh, M. F., Ananbeh, A. (2005). Estimating the correlation coefficient in a

bivariate normal distribution using moving extreme ranked set sampling with a

concomitant variable. . Korean Statist. Soc. 34, 125-140.

12. Al-Saleh, M. F. and Ananbeh, A. (2006). Estimation of the means of the bivariate

normal distribution using moving extreme ranked set sampling with
concomitant variable, Stat. Pap. 48, 179-195.

58



© Arabic Digital Library - Yarmouk University

13. Al-Saleh, M. F. and Endeer, M. J. (2007). Modification of bivariate ranked set
sampling using deep stratification. ]. Stat. Theory Appl. 6, 388-407.

14. Al-Saleh, M. F. and Samuh, M. (2008). On multistage ranked set sampling for
distribution and median estimation. Computat. Statist. Data Anal. 52, 2066-2078.
15. Al-Saleh, M. F. and Diab, Y. A. (2009). Estimation of the parameters of
Downton’s bivariate exponential distribution using ranked set sampling scheme.

J. Stat. Plann. Inference 139, 277-286.

16. Al-Saleh, M. F. and Samawi, H. M. (2010). On estimating the odds using moving
extreme ranked set sampling. Stat. Methodol. 7, 133-140,

17. Ananbeh, A. (2004). Estimation of the parameters of the Bivariate Normal
Distribution Using Moving Extremes Ranked Set Sampling. Master Thesis.
Department of Statistics, Yarmouk University, Jordan.

18. Bain, L. ]. (1978). Statistical analysis of reliability and life testing models: theory
and methods. Marcel Dekker, New York, USA.

19. Balakrishna, N. and Lai, C. D. (2009). Continuous Bivariate Distributions.
Second Edition, Springer, New York, LUSA, 401-466.

20. Casella, G., Berger, R. (2002). Statistical Inference. Second Edition, Wads Worth
and Brooks, California, USA. , 338.

21. Chacko, M. and Thomas, Y. (2008). Estimation of a parameter of Morgenstern
type bivariate exponential by ranked set sampling. Ann. Inst. Statist. Math. 60,
273-300.

22. Chen, Z., Bai, Z. and Sinha, B. K. (2004). Ranked Set Sampling Theory and
Applications. Springer, New York, USA.

23. Choo, Q. H. and Conolly, B. (1979). New results in the theory of repeated orders
queueing systems. J. of Appl. Prob. 16, 631-640.

24, Cordova, J. R, and I. Rodriguez-Iturbe (1985). On the probabilistic structure of
storm surface runoff, Wat. Resour. Res. 21, 755-763

25, Diab, Y. A. (2006). Estimation of the parameters of Downton’s bivariate
exponential distribution using different ranked set sampling scheme. Master
Thesis. Department of Statistics, Yarmouk University, Jordan.

26. Downton, F. (1970). Bivariate exponential distribution in reliability theory. J.
Roy. Statist. Soc. B 32, 408-417.

39



© Arabic Digital Library - Yarmouk University

27. He, Q. and Nagaraja, H. N. (2011). Correlation estimation in Downton's
bivariate exponential distribution using incomplete samples. J. Statist. Compul.
Simul. 81, 531-546.

28. Tliopoulos, G. (2003). Estimation of parametric functions in Downton's bivariate
exponential distribution, ]. Statist. Plann. Inference, 117, 169-184.

29. Kaur, A., Patil, G. P., Sinha, A. K. and Taillie, C. (1995). Ranked set sampling: an
annotated bibliography. Environ. Ecol. Stat. 2, 25-54.

30. Kibble, W. F. (1941). A two-variate gamma type distribution. Sankhy; 5, 137-
150. '

31. Kim, H. G. and Rao, B. M. (2000). Expected warranty cost of two-attribute free-
replacement warranties based on a bivariate exponential distribution. Comput.
Indust. Eng. 38, 425-434.

32. Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous multivariate
distributions.Vol. 1, Second Edition, Wiley, New York.

33. Lefebvre, M. (2004). A bimodal model for the high values of a river flow. Canad.
J. Civ. Eng. 31, 473-477.

34. Mclntyre, G. A. (1952). A method for unbiased selective sampling using ranked
sets. Austral. J. Agricul. Res. 3, 385-390.

35. Moran, P. A. P. (1967). Testing for correlation between non-negative variates.
Biometrika 54, 385-394.

36. Myung, ]. I. and Navarro, D. J. (2005). Information matrix. Ency. of Stat. in
-Behavioral Sci. 2, 923-924.

37. Nadarajah, S. and Kotz, S. (2006). Reliability for some bivariate exponential
distributions. Math. Probl. Eng. 14, 1-14.

38. Nagao, M. and Kadoya, M. (1971). Two-variate exponential distribution and its
numerical table for engineering application. Bull. Disas. Prev. Res. Inst. 20, 183~
215.

39. Samawi, H. M., Ahmed, M. S. and Abu-Dayyeh, W. (1996). Estimating the
population mean using extreme ranked set sample. Biom. . 5, 577-586.

40, Samuh, M. and Al-Saleh, M. F. (2011). The Effectiveness of Multistage Ranked
Set Sampling in Stratifying the Population. Comm. Stat. Theo. Methods 40, 1063-
1080.

60



© Arabic Digital Library - Yarmouk University

i1. g]ﬁ, D. and Lai, C. D. (1998). Fisher information for Downton's bivariate
exponential distribution. J. Statist. Comput. Simul. 60, 123-127,

42. Sinha, A. K. (2005). On some recent developments in ranked set sampling. Bul.l
Inform. Cybern. 37, 137-160.

43. Sroka, C.]., Stasny, E. A. and Wolfe, D. A. (2005). Ranked Set Sampling: Where
Are the Samplers?. Technical Report 752, The Ohio Stale University, Department of
Statistics.

44. Stokes, S. L. (1977). Ranked set sampling with concomitant variables. Commun.
Statist, Theor. Meth. 6, 1207-1211.

45. Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population
mean based on the sample stratified by means of ordering. Ann. Inst. Statist. Math
20, 421-428.

46. Wolfe, D. A, (2004). Ranked set sampling: An approach to more efficient data
collection, Statist. Sci. 19, 636-643.

47. Yang, S. S. (1977). General distribution theory of the concomitants of order
statistics. Ann. Statist. 5, 996-1002.

48. Zheng, G. and Al-Saleh, M. F. {2002). Modified maximum likelihood estimator
based on ranked set sampling. Ann. Inst. Statist. Math. 54, 641-658.

61




